Kit d'analyse de la concentration en silice

K-9011/R-9011 ULR CHEMets® **Kit**: 0 - 0,20 ppm **K-9010/R-9010 CHEMets**® **Kit**: 0 - 1 et 1 - 10 ppm

Informations relatives à la sécurité

Lire la fiche de données de sécurité (disponible sur le site www.chemetrics.com) avant de réaliser la présente procédure d'analyse. Porter des lunettes et des gants de protection.

Procédure d'analyse

- 1. Verser 15 ml de l'échantillon à tester dans le bécher à échantillons (fig. 1).
- 2. Ajouter 10 gouttes de solution d'activation A-9001 (fig. 2). Boucher le bécher à échantillons et le secouer pour bien mélanger le contenu.
- 3. Patienter 4 minutes.
- 4. Ajouter 5 gouttes de solution de neutralisation A-9000 (fig. 2). Boucher le bécher et le secouer pour bien mélanger le contenu.
- 5. Patienter 1 minute.
- 6. Plonger l'ampoule CHEMet, pointe vers le bas, dans le bécher à échantillons. Casser la pointe de l'ampoule. L'ampoule se remplit alors d'échantillon et une bulle d'air destinée à permettre le mélange de ce dernier se forme (fig. 3).
- 7. Pour mélanger le contenu de l'ampoule, retourner cette dernière plusieurs fois, en déplaçant la bulle d'air d'une extrémité à l'autre. Essuyer l'ampoule.
- 8. **K-9011**: Lire le résultat de test **4 minutes** après avoir cassé la pointe.
 - K-9010 : Lire le résultat de test 2 minutes après avoir cassé la pointe
- 9. Lire le résultat de l'analyse à l'aide du comparateur prévu à cet effet (K-9011 n'a qu'un seul comparateur).
 - a. Comparateur pour la gamme basse (fig. 4): Insérer l'ampoule, extrémité plate en premier, dans le comparateur. Maintenir le comparateur en hauteur vers une source de lumière et l'observer par en-dessous. Faire pivoter le comparateur jusqu'à identifier la couleur de référence la plus proche de la couleur de l'échantillon.
 - b. **Comparateur pour la gamme haute (fig. 5) :** Placer l'ampoule entre les couleurs étalons jusqu'à identifier la couleur de référence la plus proche de la couleur de l'échantillon.

Méthode d'analyse

La méthode d'analyse de la concentration en silice CHEMets® et ULR CHEMets®¹ repose sur la chimie de l'hétéropolybleu.²,³,⁴ La silice réagit avec le molybdate d'ammonium à un pH de 1,2 pour former de l'acide molybdosilicique, qui est ensuite réduit par de l'acide amino-naphtol-sulfonique pour obtenir de l'hétéropolybleu. La couleur bleue en résultant est directement proportionnelle à la concentration en silice de l'échantillon. Les interférences avec le phosphate (jusqu'à 60 ppm) sont masquées par l'ajout d'une solution de neutralisation A-9000 (acide citrique). Cette méthode détermine la silice « réactive au molybdate ».

- 1. CHEMets et ULR CHEMets sont des marques déposées de la société CHEMetrics, LLC Brevet américain n° 3,634,038
- 2. Méthodes APHA standards, 23° éd., Méthode 4500-SiO $_2$ D 1997
- 3. Méthodes EPA d'analyse de l'eau et des déchets, Méthode 370.1 (1983)
- 4. ASTM D859-05, Concentration en silice dans l'eau

www.chemetrics.com
4295 Catlett Road, Midland, VA 22728 États-Unis
E-mail: orders@chemetrics.com

Janvier 2023, Rév. 13

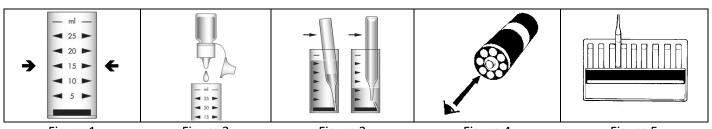


Figure 1 Figure 2 Figure 3 Figure 4 Figure 5